Production and Nutritional Assessment of Phytochemical-Rich Soft Fruit and Lettuce

Implications of a Nutrition Driven Food Policy (Work Package 3)

Matthew Ordidge¹, Paulina Garcia Macias², Eleni Vysini¹, Nicholas H. Battey¹, Mike H. Gordon², Paul Hadley¹, Julie A. Lovegrove², Alexandra Wagstaffe¹, Philip John¹ & Bruce Traill³ The University of Reading, School of Biological Sciences (1), School of Food Sciences (2), School of Agriculture, Policy and Development (3), Whiteknights, Reading

Background

- Berries are a good source of phenolics
 - Flavonoids, phenolic acids and anthocyanins
- Phenolics have proven health benefits for humans
 - Reduce risk of chronic diseases (coronary heart disease, stroke, atherosclerosis and cancer)
- · The biological effects of phenolics have been linked with their antioxidant properties
- Phenolics are synthesised partly to protect plants from UV damage in response to UV
- · Soft fruit production in the UK relies on protected cropping
- · Plastic films currently used for crop protection limit the availability of UV light
- Novel plastic films are being developed which affect the UV light available to protected crops

Aims

To analyse the effect of novel plastic films on soft fruit and lettuce grown using current commercial practices:

- 1. Identify any differences in yields and crop development
- 2. Quantify the effects of the films on the phenolic content and antioxidant capacity of fruit and lettuce
- 3. Assess the effects of producing phytochemical-rich fruit on the soft fruit and lettuce markets
- 4. Identify the potential impact of a nutrition driven food policy on the rural environment

Experimental plan

Analyse fruit and lettuce grown to commercial standards under 3 plastics:

- UVI/EVA standard commercial film (39% transmisison across UV range)
- UV block – blocks UV up to 380nm (4% transmission)
- UV window transmits full UV range (80% transmission)

Facilities

The structure Each tunnel consists of is 75m in seven spans and is 45m across Strawberries are grown in peat bags on a tabletop patchwork system

Crops

Crops have been chosen to be commercially representative and allow the identification of seasonal changes in the effects of the films:

a. Strawberry Junebearing Everbearing	(Elsanta) (Everest / Flamenco)	C.	Raspberry Biennial Primocane	(Tulameen) (Joan Squire)
b. Lettuce	(Lollo Rosso)	d.	Blueberry Highbush	(Bluecrop)

The plastics are arranged to each give three independent replicated blocks in the multi-span tunnel structure.

Gaps are used to reduce 'edge' effects and light contamination.

Measurements

Yield & crop physiology

- Marketable yield
- Non marketable yield
- Flower to fruit development
- Sugar content
- Vegetative development
- Assimilate partitioning Harvest index

Nutritional content

- Phenolic profile **Total Phenolics Specific Phenolics**
- Folin Ciocalteu's method High Performance Liquid Chromatography (HPLC)

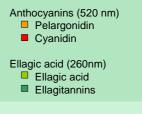
Fresh / dry weight

Fresh / dry weight

Size / leaf number

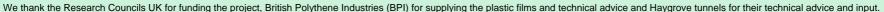
Time

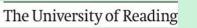
OBRIX


 Antioxidant activity Oxygen Radical Absorbance Capacity assay

Strawberry Yields (2005)

- 1. Elsanta 265g per plant (60% marketable) 2. Everest 1272g per plant (82% marketable)
- 3. Flamenco
 - 956g per plant (79% marketable)


HPLC Analysis



length