

Non-Food Crops The Commercialisation Issues -Peter Lillford

- Environmental issues are finally becoming major drivers: Specifically waste disposal and renewable alternatives to raw materials from fossil fuels
- Performance characteristics must be met
- Agricultural scale must meet demand
- UK is well behind N America and continental Europe

Recent Market Research

- Developing products for "well-being" from natural raw materials
- Customer is:
 - more aware of environmental issues,
 - doesn't approve of animal testing,
 - wants plant-derived materials,
 - doesn't want to see the rainforests plundered

Market Trends

- Holistic products
- Internal / external combinations

"Respect for customers..."

Renewable Feedstocks

Global Biomass produced annually = 170×10^9 tonnes

- > 75% carbohydrate: cellulose, hemicelluloses, starch, sugars
- > 20% lignin
- > 5% others: fats, oils, proteins..
- Valuable source of carbohydrate for energy, fuel and chemicals
- Currently 6 x 10⁹ tonnes utilised (3% of which are non-food uses)

UK Waste: A rich source of biomass

- Food industry by-products = 30MT
- Agricultural Waste 80MT (wheat straw = 10MT)
- Municipal Waste streams 25MT*
 - Garden waste 5MT
 - Paper and board 4.5MT
 - Compostable kitchen waste 4.5MT
- Timber & wood waste 2.8MT
- Brewers spent grain 0.5MT

UK Waste = 434MT

Growth rate = 3-4% pa

UK has very high landfill rates

What's Happening in the UK?

- Biomass for Burning
 Short rotation willow and wheat
- Bio Fuels
 - Bio-Diesel already being manufactured & sold
 - First bioethanol plant planned
- Bio-Plastics / biocomposites
 - Innovations in packaging, but a long way to go with other materials (small scale)
- Oleochemicals / lubricants
 - Well established industry, still innovating.
- Pharmaceuticals/Nutraceuticals
 - A return to plants as factories? For natural secondary metabolites and/or recombinant proteins
- And the rest...
 - CHP, Essential Oils, Insulation, Flavours and Fragrances, Fabrics,

Non-Food Crops

Bio-diesel in the UK

- Petroplus, Teeside; ULSD + bio-diesel blend (5%)
- Rix Biodiesel, Hull; biodiesel blend

Biodegradable Lubricants

Resurgence in vegetable oil based lubricants

- Environmental legislation
- Lubricity
- > Biodegradability, Low toxicity
- > High load carrying, Low evaporation
- Ready and Sustainable supply

Current total EU lubricants market approx 4.2M Tonnes

- biolubricants 0.1M Tonnes
- 1.3M T predicted for 2010

Predicted that 90% of lubricants will eventually be crop based Common Crop Sources: Rapeseed, Sunflower, Soya, Palm Base oil or synthetic ester with additives

Slide by Dr W Smith, NNFCC

Biodegradable Cutting Fluids

Metalworking oils – engine manufacture

- Performance
- Cost competitiveness
- HSE benefits (negate oil mists

Commercial Successes:

- Ford/Houghton
- Mercedes-Benz/Fuchs

Slide by Dr W Smith, NNFCC

Biomass to Chemicals and Fuels

UK Chemicals & Energy Resources

 Globally ~ 350MT organic chemicals produced from fossil fuel feedstocks (70,000 products).

- Value of Global Chemical Industry \$1.8 trillion (UK £42 Billion)
- UK Consumes 4.5MT of plastics pa
- Petrochemicals consume 7% of fossil fuel production
- UK will be net Oil/Gas importer by 2010
- Chemicals production moving to areas of advantaged feedstocks

Modern Oil Refinery

- Highly integrated
- Fuels, chemicals, power, materials
- Large volume markets
- Numerous thermal & catalytic processes
- Whole crude oil feedstock utilisation
- Evolved over 150 years
- Originally one product: kerosene lamp oil

Biorefinery Concept

- Whole crop utilisation
- Diverse products/markets
- Economies of scale (large market driver)
- Diverse processing: Biochemical & Chemical (syngas)
- Lignin provides energy
- Analogy with oil refinery
- Difference: Diverse feedstock, biochemical processing

Plastics

UK Market ~ 5.0MT

- ✤ W. Europe plastic waste 2000 = 19.5MT
- * Critical to divert waste from landfill
- Waste Recovery (mechanical recycling, feedstock, energy) = 7MT
- UK very low recovery rates
- ✤ Biodegradable Polymers

Slide by Dr W Smith, NNFCC

Synthetic Biopolymers: Polylactic Acid

- Fully biodegradable new polymer (since 1932!)
- * Based on lactic acid produced from starch
- 20-50% less fossil fuel resources than conventional plastics
- Dow Cargill "NatureWorks" Polymer
- * 140,000 tonne pa plant in Nebraska

Slide by Dr W Smith, NNFCC

Biopolymers

Biologically produced polymers with unique properties

- Sustainable materials
- > CO₂ neutral monomer source
- Reduced processing
- Burn cleanly
- New functionalities
- Biodegradable, compostable

Natural Biopolymers: Starch Based

Synthetic Biopolymers: polylactic acid, polycaprolactone....

Slide by Dr W Smith, NNFCC

Growth rates - up to 30% of market by 2010

Starch Based Biodegradable Polymers

- ✤ Feedstock: Corn, potato, maize, food waste....
- Starch blended with other polymers)
- ✤ Novamont: Mater-Bi Family
- ✤ 35,000 t/y production capacity
- Rodenburg (Netherlands): Solanyl polymer
- Made from potato peels 40,000 t/y capacity

Slide by Dr W Smith, NNFCC

Industry views

- A common view within the commodity polymers sector is that biodegradable polymer technology is currently limited by
- 1. High price and process temperatures
- 2. Poor tensile properties at higher temps
- 3. Poor solvent resistance
- 4. Hydrolytic instability
- 5. Insufficient mechanical properties

Present position

- Two main issues still to be resolved
- 1. What is more important from a material properties and market perception standpoint;
 - Polymer is derived from a bio resource carbon neutrality
 - Polymer is biodegradable
 - Or are both factors crucial to adoption in the market
- 2. Disposal
 - Composting
 - Who will be responsible for developing the infrastructure
 - Recycling
 - Energy recovery

Pharmaceuticals

Nutraceuticals and even

Cosmaceuticals

Markets Increasingly regulated

From ASA to MHRA

From "orphan drugs" to billiondollar pharmaceuticals

Customers

The general public

Trained Herbal Practioners

Pharma,

multi-nationals,

Governments, WHO, etc

Not an easy market to break into

Medicinal Plants

Modern drugs from plants; Quinine (Malaria)

Extracts recorded by Europeans from 1638

Quinine Chloroquine Mefloquine

CI

chloroquine

Η

Cinchona Officinalis

Resistance developing; alternatives needed

quinine

Cinchona Officinalis

Medicinal Plants

- From aromatherapy to recombinant proteins

Aromatherapy

True Herbal Medicine (including Traditional Chinese Medicine) Pure plant-made single compounds Semi-synthetic pharmaceuticals Synthetic mimics / third generation compounds

Recombinant proteins (bio-factories)

Can be a Farm-Based Venture

Essential Oils/ Personal Care

Examples:

Norfolk Lavender, Norfolk Essential Oils Marketing from premises and on the WWW. Direct sales to public and to Trade UK and overseas Own distinctive brands and lines Tourist trade; Coffee shops, tours, etc Direct link to growing, harvesting and processing

Summary

National Non-Food Crop

- As demonstrated across the EU and the US non-food crops are already a realistic industrial raw material - therefore technology is not the major issue
- A number of important barriers need to be addressed before large scale commercialisation can commence
 - 1. Need for commercial scale pilot plant to demonstrate product performance, process viability and market acceptance
 - 2. Robust feedstock supply at full commercial scale
 - 3. Need to restructure regulatory framework that addresses the benefit renewables have on waste management and climate change
 - Need for Government to incentivise industry to adopt renewables as mainstream raw materials – cannot simply rely on market forces as this tends to promote the cheapest and most accessible materials

Regulatory Requirements

- Chemicals regulations REACH, dangerous goods/preparations
- Climate change levy
- Materials and Articles in Contact with Food Regulations etc
- WASTE LEGISLATION
 - SECTOR SPECIFIC STANDARDS AND AGREEMENTS

Non-Food Crops

Examples of positive drivers

UK CO₂ Targets

Energy Crops Scheme

Tax reductions on liquid biofuels

Co-firing initiatives

CAP Reform

R&D Funding

Government Procurement

NFC's on set-aside

P&MG Scheme

- When all factors come together:
 - Performance
 - Environmental profile, LCA
 - Government incentives/legislation
 - Health and Safety at work
 - Cost benefits
 - Availability of raw materials
 - Procurement policies
- We get away from niche markets and into mainstream use
 - Leads to continued development cycle

Thank You

www.nnfcc.co.uk