Stakeholders and relationships in knowledge production researchers, brokers and farmers

Fergus Lyon (Middlesex University)

RELU conference 19 Jan 2006 Manchester

Introduction

- Objectives of the research
 - How do farmers develop farming systems that are best suited for their context?
 - How do research scientists carry out whole farm agro-ecosystems research?
 - How can farmers and researchers collaborate?

The research team

- Fergus Lyon (Middlesex University
- Sarah Clarke, Martin Woolfe and Bruce Pearce (Elm Farm Research Centre)
- Frances Harris (Kingston University)
- David Gibbon (RULIVSYS)

The contexts

- Policy context
 - Increasing productivity
 - Promoting environmental benefits
 - Making public sector funded research relevant
- Academic context
 - Scientific method in complex and uncontrolled environments
 - Challenges of interdisciplinary research
 - Theories of innovation
 - Sociology of groups and teams

Farmer involvement

- Types of farmers
 - Interested in research (own and scientific)
 - Other innovators
 - Conservative followers
- Types of projects involving farmers
 - Farmers involved in design and evaluation
 - Farmers consulted
 - Researchers examine farmers' practices

Issues faced by scientists working with farmers

- Scaling up the results to field, farm or landscape
- Lack of understanding among scientists
 - How farming systems operate and farmers' priorities
 - The word 'commercial' used synonymously with systems
 - 'Farmers don't do as they are told' but flexibility and response to uncontrolled environments is part of farming systems
- Issues of trust and farmer concerns
 - How the research will be used
 - Sharing of sensitive information (prices, accidental rule breaking, animal disease risks etc)

Bridging the farmer-scientist gap

- Private sector scientists more comfortable talking to farmers
- Scientists working with farmers come from farming families or have personal links
- Need to work through intermediary 'boundary spanners' such as advisers

Collaboration amongst scientists

- Types of scientists in case study projects
 - Technology co. scientists (eg plant breeders)
 - Contract research scientists (eg ADAS, TAG)
 - Pressure groups scientists (eg GCT, RSPB)
 - University academics
- Involvement of farmers necessitates an interdisciplinary research approach
- Only occurs when funders insist on interdisciplinary teams
- Challenge of bringing different disciplinary contributions together

Building relationships

- Difficulties of building trust and co-operation (going the extra mile) if no existing relationship of if forced together by funders
- Build on existing relationships and networks
- Problems of team changes
- Types of scientists have different objectives
 - Responding to different stakeholders (farmers, research funders, shareholders, academic peers etc)
 - Issues of when to publicise/publish and where
 - Extent of engagement with policy makers

Conceptions of 'proof' and statistical significance

- Achieving rigorous replications is challenging working with farmers
- Farmers want to know what works for them
- Technology Co.s include controlled trials to convince others and interaction with farmers for gut feeling
- Pressure groups under pressure to shape policy early
- Academics require high rigour for publications and career progression

Charting relationships

	General farmer	Research minded farmer	Advis- ers	Contract research scientists	Tech company scientists	Pressure group scientists	Acad- emics
General farmers							
Res. minded farmers							
Advisers							
Contract res scientists							
Tech co scientists							
Pressure gp scientists							
Academics							

Conclusions

- Need for greater understanding of different priorities of actors
- Interdisciplinary co-operation takes time to develop longer term projects or build on existing relationships
- Statistics possible if plan for uncertainty and loss of some replications
- Systems thinking limited and the issue of complexity not considered in the case studies
- Interdisciplinary research requires specific funding and recognition in career structures