Space, uncertainty and the challenge of simulation modelling using minimum information requirements: implications for rural land management in relation to diffuse agricultural pollution

Stuart N. Lane Department of Geography, University of Durham <u>s.n.lane@durham.ac.uk</u>

Andrew Donaldson and Neil Ward, University of Newcastle Louise Heathwaite, University of Lancaster Sarah Whatmore, University of Oxford Acknowledgements: RELU Capacity Building Bid:

#### European Union and U.K. context

The move from 'end of pipe' treatment to addressing the problem at 'source'

The things that matter are not just people: ecosystem integrity

*Scaling up*: move away from site specific restoration *Holistic analysis*: recognise contradictory objectives

#### The nature of diffuse pollution



#### The nature of diffuse pollution

• Diffuse pollution has some special characteristics:

- spatially-*distributed*
- spatially-structured (landscape arrangement)
- time-varying
- above ground and below ground
- The severity of the problem is *emergent* at points in space and time even though the causes may be extensive and hidden from view
- e.g. eutrophication in the UK: costs c. £58-89 million/year (Pretty *et al.*, 2003)

#### Modelling and diffuse pollution

- Characteristics of diffuse pollution mean that modelling has become a key policy tool for deciding what to do where:
  - Can't measure everywhereMaking the invisible visiblee.g. MAGPIE

Defra, 2002. The Government's Strategic Review of diffuse water pollution from agriculture in England: Agriculture and Water: A Diffuse Pollution Review, Chapter 4.



#### Aims and structure

- 1. Present (yet another) landscape scenario model for diffuse pollution, this one grounded in *risk* and *connectivity*
- 2. Move on from seeing model as a tool to thinking through the role of modelling (critically) in the rural environment

# 1. A model for identifying what to do where

- There is a gap between
  - The scientific desire to capture the detailed space-time dynamics of system response
  - The practical need to target land management
- Many landscape simulation models are *spatial* oxymorons
  - Based on excellent physics, chemistry and biology
  - But are applied at such a coarse resolution and with so much boundary condition and parameter uncertainty that the fundamentals are lost
  - Space is downgraded

#### 1. A model for identifying what to do where

An approach that has sufficient science should recognise that:

- 1. Sources of risk are predominantly associated with distributed patterns of land use: *spatial signal*
- 2. Riskiness is controlled by the rate at which risk is acquired by water associated with surface and shallow subsurface flows: *catchments are large and complex spatial filters* (Kirchner)
- 3. Riskiness is moderated by the level of connectivity along the flow path: *the filter is spatially structured through connectivity*

4. Establishing risk in *absolute* terms is a challenge

a. Uncertainties due to exact land management practices

- b. Uncertainties in nature of connectivity and process rates
- c. Uncertainties due to dynamism and time dependence

5. Connectivity in space and connectivity in time can be related (an ergodic hypothesis): *measures of spatial connectivity implicitly have a temporal component* 

6. Biology is space and time integrating

#### SCIMAP: NERC, EA, Defra, Eden Rivers Trust

The point at which a diffuse pollution emerges (we see these and so do not need to predict them)

To sub-catchments and catchments To the drainage network This is integrated through the field scale (the management unit) Which sub-catchments need most attention? Which farms need most attention? Which fields need most attention?

There can be substantial local variability, at the within-field scale, in hydrological function





Acknowledgement: Eden Rivers Trust



## 2. Thinking critically ...

- Most modelling would normally stop here and pass the model onto policy makers
- This is where we need to think much more critically about the knowledge framework within which models are situated
  - The remaining argument ...
    - Models as problems framed
    - The thorny problem of validating models in space
    - Models and the generation of knowledge controversies

## 2. Thinking critically ... (a)

- Problem framing:
  - Goffman (1974, 10), the frame is a "principle of organisation" out of which "definitions of a situation are built up" (Goffman, 1974, 10).
  - Models are problems framed as all models contain the crucial steps of *perceptualisation* and then *conceptualisation*
  - Law (2004) and Law and Urry (2004) there is a process of *enactment* here
    - particular modellers (within particular knowledge networks) create particular models (*objects*) and in so doing define the world that is modelled
  - Callon (1998): and the 'sociology of translation'

#### 2. Thinking critically ...





er

The problem is defined by the modeller and does not exist independently from the modeller

# 2. Thinking critically ... (a)

'Physically-based distributed hydrological modelling'

- the physics is in there,
- but the model is applied over a spatial resolution that is so coarse (> 10m, commonly >50 m, even up to 2 km...) that the physics is largely irrelevant
  and we can go to our beds happy that our physics
  - is correctly derived from fundamental equations
- Certain set of 'scientific', social, commercial etc. influences that make us frame the model as physically-based

# 2. Thinking critically ... (a) SCIMAP: dp is framed as a problem of pollution in rivers





#### 2. Thinking critically ... (a)

- Miller (2000): 4 types of framing
  - Storytelling (e.g. the way dp is explained)
  - Modelling (simplification and specification in dp models)
  - Canonisation (the supremacy of certain explanations)
  - Normalisation (institutionalisation of explanations)
  - Central to understanding this is a deeper engagement with *knowledge practices* 
    - Understanding how particular percepetual models are told, modelled, canonised and normalised, and not others
    - Analysing the naïve vision of 'best practice'
    - Tracing context/contingence in the evolution of networks of understanding leading to particular emergent views

#### 2. Thinking critically ... (b)

- Claims to scientific method as the 'get out clause'
  - "This is all very well, if a bit jargonised, but our models have been shown to reproduce reality through validation"
- Validation is a problematic concept (Oreskes *et al.*, 1994 – it is commonly leads to *'forced empirical adequacy'*
- Particularly problematic for diffuse pollution models as we largely have to substitute space for time
  - Measuring DP is expensive
  - DP is complex in time
  - Measure DP through time at a restricted number of spatial locations
  - Generally *not* to validate a model but to assess conformity with statutory regulations

#### 2. Thinking critically ... (b)



### 2. Thinking critically ... (b)



Time-series are not good at distinguishing between different realisations of the same model.

<u>ا 25</u>

We still do not know whether these different realisations imply different spatial signals and hence policy response.



### 2. Thinking critically ... (c)

#### All this matters

- DP models are increasingly yielding predictions at the field and sub-field scales
  - They point fingers
- They operate entirely from remotely-acquired data
  - Those implicated are distanced from the generation of the information itself
- The spatial detail of these models is readily shown to be wrong when challenged by *local* knowledge
- Traditionally, *internalised* with scientific debate
- Now challenged by *externalisation* of both knowledge *and* debate
  - new emphases on freedom of information and digital diffusion

#### 3. Where the CB has got us

- There are interesting issues in terms of science
  - Social science and the problem framing implicit in landscape simulation models (understanding Callon's 'translation' – what, who, how, why?)
  - Natural science and understanding the spatial signatures of these kinds of environmental models (does equifinality matter?)
- But also both inter-disciplinarity and practice

