Landscape Intervention Decision Support System

•A great deal is being spent on Agri-environment schemes.

•Whilst there is some direction given to these schemes, they essentially depend on the decisions of individual farmers.

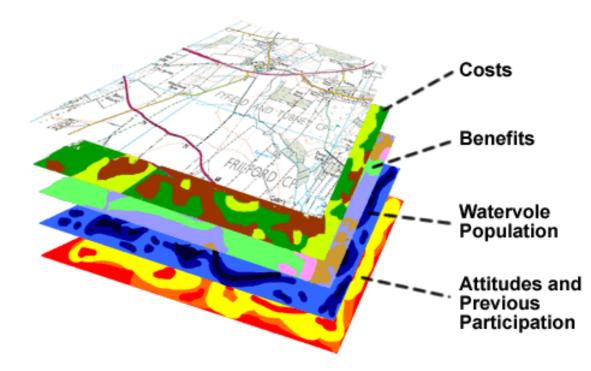
•Wildlife conservation works best when coordinated across a landscape.

•This scoping study looks at the feasibility of building tools to direct agri-environmental work to maximise biodiversity gains whilst minimising costs.

David W. Macdonald Sandra Baker Paul Johnson Philip Riordan Adam Dutton University of Oxford, WildCRU

Gareth Edwards Jones University of Wales

RESEARCH



Maximising the Net Benefits of Conservation work

- The fragmentation of habitats presents one of the largest threats to British wildlife.
- The costs of this work will also vary depending on where it is placed.
- In this project we are measuring benefits, once costs are subtracted, across a landscape.
- We can then target work so as to maximise social benefits.

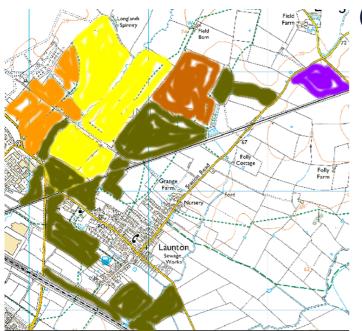
Overview of the Sums

Farmers

e.g. Fencing costs

Local People

e.g. Seeing more wildlife


Direct Values

Wildlife

e.g. Simply knowing biodiversity is being protected

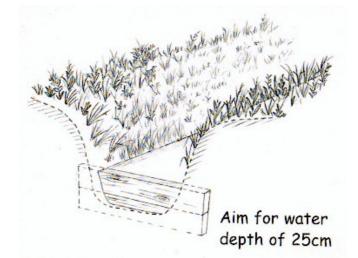
Indirect/ Non-Use Value

Farmers: Costs

Opportunity Cost

Strictly defined as the highest value alternative

Here it is what they would have grown

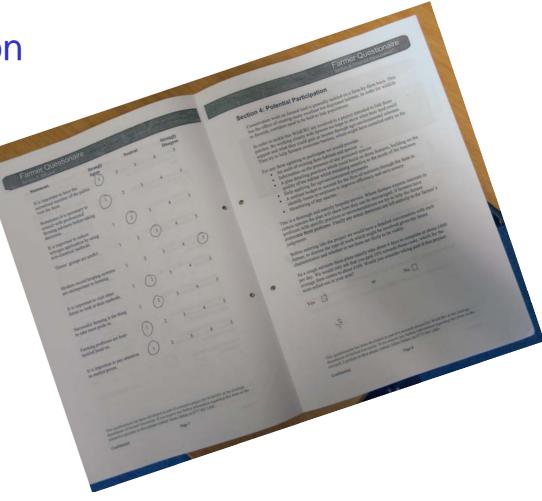

This will vary depending on the size of the enterprise as well as the product

Capital Cost

More straightforward

Cost of fencing, putting in bunds, topping set aside...

Project's cost


Farmers: Can we predict the probability of participation in environmental work?

Previous Participation

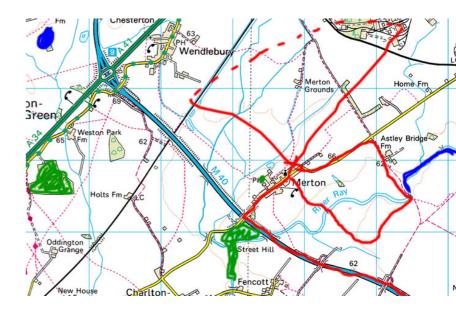
Attitudes

Demographics

Stated Preference

Yes but...

- Nobody is anti-environment. Only the priorities alter.
 - No easy predictor, requires interview
 - Economic indicators are not particularly good
 - Their attitudes, previous participation and time in farming can produce a good predictor


• Money does not really seem to be the issue.

How does this benefit the local community?

Direct Use Benefits

For local residents these can probably be left out of the calculation.

Spend the vast majority of their time in their villages and towns

Most of what they see will be from their buildings or cars

Might want to consider specific conservation areas, but that includes people from a broader area

Measuring biodiversity benefits: Using flagship species

Breed: March -October **Gestation period:** 20-30 days Litter size: 5-6 young 3-5 Litters per year

Water voles

Declined by 95% in UK in last 20 years (priority BAP species)

Basic premise: – water voles make good colonists

High recruitment and quick to respond to habitat improvement

Fairly Iconic

Territorial

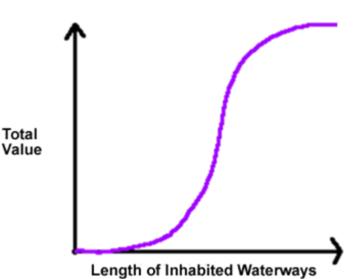
Valuing a Vole: Converting the change in water voles into pound signs

But does it make sense to talk about the value of a vole?

Of course not.

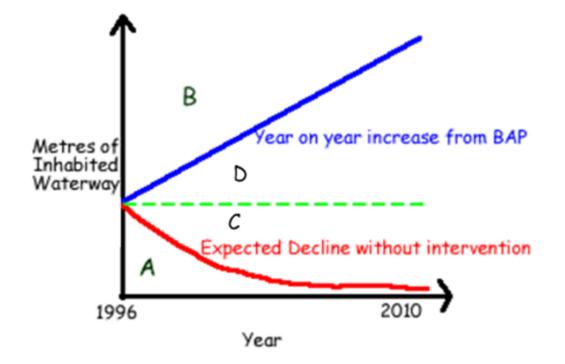
Mean Willingness to Pay values were **Water Vole** £7.44

(White et. al 1997)


Does it even make sense to talk about the value of a metre of habitat?

Perhaps, but...

Depends on where we are now


Puts strain on first comers if taken too seriously

Valuing a Vole: Pulling the value for the BAP apart

I instead opted for a flat rate of £X per extra stretch of inhabited waterway.

Willingness to pay of the UK public= £13.90/metre for new habitats

A quick cost benefit analysis

This does not represent a full cost benefit analysis, there are many other benefits from this work.

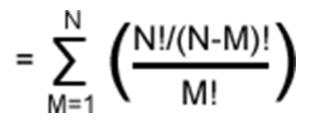
Below are the present values of the cost of creating water vole habitat along a kilometre of waterway.

Below are the present values of the cost of creating water vole habitat along a kilometre of waterway.

Remember that 1 metre of vole habitat is worth \sim £13.90 so 1km = £13,900

Through arable land

Through dairy farms


Opportunity Cost	£3490	Opportunity Cost	£15666
Establishment	£150	Establishment	£150
TOTAL	£3640	Fencing	£2870
Mink control	£8333	TOTAL	£18686
With mink control	£11,973	Mink control	£8333
		With mink control	£27.019

(farm estimates from Nix Mink control estimates courtesy of the Game Conservancy Trust)

Difficulties of combining these values to derive the most efficient solution: Technical constraints

Scale and data availability are dwarfed by computational complexity.

The most appropriate set of fields to work with could be 1 field, all of them, or any combination in between.

Brute processing power will never properly solve these problems.

A simple population model

We are looking for the cheapest way to de-fragment water vole habitat

To estimate the effect of any work on the water vole population:

•Calculate the viability of different carrying capacities

•Assume different lengths of non-habitable corridor to join these populations or, with more accurate ecological data, you could create a function of likelihood of movement given distance

•Estimate the carrying capacity based on the length of waterway, buffers around it etc.

In Conclusion: results

• Direct use can probably be ignored in terms of any spatial bias. Large/popular wildlife parks could conceivably be included

• Participation could be predictable (~80%) with 7 variables, but requires interview.

• Any population model must be easily calculable.

• Social prices can be created for small changes in habitat.

In Conclusion: moving forward

• This could potentially provide a mechanism for Cost Benefit Analysis.

• These models can be built and provide significant efficiency gains but will they be?

• What could this be used for?

• What else could be considered?