Catchment management for the protection of water resources: The Ecosystem Health Report Card

A Rural Economy and Land Use Programme research project investigating the appropriate combination of regulation, advice, land use measures, incentives and voluntary action for a collaborative and adaptive approach to catchment management to protect rural land and water resources.
Diffuse water pollution originating from agriculture and other rural activities poses challenges for public policy and requires innovative management approaches. These range from best practices that improve income and the environment in farming and other sectors, to less intensive land use, and land use change. Implementation of the best ‘mix’ of measures for a given location requires the appropriate combination of regulation, advice, incentives and voluntary action, and can best be designed and delivered by an adaptive, collaborative approach to catchment management. To assist this approach, the project developed an Ecosystem Health Report Card in consultation with stakeholders in two case study catchments.

Can stakeholders contribute to catchment management?

In order to achieve this, it is essential to have high quality informational tools and decision-support systems that can communicate technical information to informed lay participants, and that can effectively integrate measured empirical data with location-specific detail that local people are able to provide.

Stakeholders can contribute to environmental policy development and implementation, and enhance the quality of professional enquiry through integration of independent scientific and local contextual knowledge.

What is an Ecosystem Health Report Card?

Engagement with stakeholders in the two case study catchments of the River Thurne in The Broads and River Tamar in south-west England revealed that communication of water quality monitoring data in a way that informs land users and other interest groups is essential to facilitate meaningful discussion of the causes of diffuse pollution and possible solutions. Stakeholders demonstrated a strong local demand for such information. The approach developed here originates in South East Queensland, Australia where an annual report card has been issued since 1999 on the ecosystem health of the region’s waterways (SEQ Healthy Waterways Partnership 2008). Validated by scientists, the Report Card provides a means for drawing together monitoring data and is distributed to the public, major stakeholders and politicians. It consists of a data table and a map-based graphic.

What makes for successful presentation of a Report Card?

In this project, discussion of the Report Card with stakeholders suggested the following requirements:

- selection of colours to best meet the needs of those who are partially colour blind or otherwise sight-impaired
- detailed design points, such as the use of squares to display information rather than circles which may be confused with the fractional representation of pie charts
- use of simple terminology, e.g. ‘water plants’ not ‘macrophytes’, ‘nutrient enrichment’ not ‘eutrophication’, ‘transparency’ not ‘turbidity’
- use of text annotations to explain local factors and key issues in more detail

Clear spatial demarcation of the catchment for each monitoring point is a feature of the Report Card. This helps to raise awareness of the contributing areas of pollution sources. People are interested to see what is happening “in their backyard”, but there are also legitimate concerns voiced by stakeholders over the specific causes of pollution requiring resolution through consultation.
Ecosystem Health Report Card for the River Thurne Catchment, Norfolk.

Front page:

Upper Thorne Ecosystem Health Report Card 2007

Key

- A - HIGH
- B - GOOD
- C - MODERATE
- D - POOR
- E - BAD
- NO DATA

Indicators

- Transparency
- Temperature
- Suspended solids
- Dissolved oxygen (% sat.)
- Dissolved oxygen (conc.)
- Acidity
- Alkalinity
- Electrical conductivity
- Chloride
- Total phosphorus
- Filtered reactive phosphorus
- Nutrients
- Inorganic nitrogen
- Chlorophyll
- Diversity of water plants
- Abundance of water plants

Back page:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Parameter</th>
<th>Martham Ferry (River Thurne)</th>
<th>Martham Nth Broad</th>
<th>Somerton Nth Pump</th>
<th>Somerton Sth Pump</th>
<th>Heigham Broad</th>
<th>Hickling Broad</th>
<th>Catfield Pump</th>
<th>Stubb Mill Pump</th>
<th>Horsey Mere</th>
<th>Horsey Mill Pump</th>
<th>Brograve Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparency</td>
<td></td>
<td>0.46</td>
<td>0.31</td>
<td>0.70</td>
<td>0.31</td>
<td>0.28</td>
<td>0.19</td>
<td>0.70</td>
<td>0.31</td>
<td>0.28</td>
<td>0.19</td>
<td>0.70</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td>1.81</td>
<td>1.59</td>
<td>1.74</td>
<td>1.74</td>
<td>1.91</td>
<td>1.76</td>
<td>1.80</td>
<td>2.25</td>
<td>1.92</td>
<td>1.85</td>
<td>1.68</td>
</tr>
<tr>
<td>Suspended solids</td>
<td></td>
<td>1.07</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>0.97</td>
<td>1.06</td>
<td>1.06</td>
<td>1.03</td>
<td>1.04</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>% sat.</td>
<td>0.60</td>
<td>0.97</td>
<td>0.86</td>
<td>0.34</td>
<td>0.41</td>
<td>0.88</td>
<td>1.07</td>
<td>0.51</td>
<td>0.50</td>
<td>0.88</td>
<td>0.35</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>conc.</td>
<td>0.46</td>
<td>0.99</td>
<td>0.86</td>
<td>0.51</td>
<td>1.19</td>
<td>1.15</td>
<td>0.59</td>
<td>0.44</td>
<td>1.27</td>
<td>0.52</td>
<td>0.63</td>
</tr>
<tr>
<td>Physical</td>
<td>Acidity</td>
<td>1.38</td>
<td>1.50</td>
<td>1.41</td>
<td>1.19</td>
<td>1.31</td>
<td>1.47</td>
<td>1.43</td>
<td>1.33</td>
<td>1.29</td>
<td>1.27</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>Alkalinity</td>
<td>1.34</td>
<td>1.28</td>
<td>1.38</td>
<td>1.48</td>
<td>1.41</td>
<td>1.31</td>
<td>1.00</td>
<td>1.22</td>
<td>1.43</td>
<td>1.40</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>Electrical conductivity</td>
<td>0.45</td>
<td>0.76</td>
<td>0.96</td>
<td>0.29</td>
<td>0.95</td>
<td>0.29</td>
<td>0.18</td>
<td>1.30</td>
<td>0.33</td>
<td>0.37</td>
<td>0.08</td>
</tr>
<tr>
<td>Chemical</td>
<td>Chloride</td>
<td>0.59</td>
<td>0.92</td>
<td>0.90</td>
<td>0.35</td>
<td>1.32</td>
<td>0.31</td>
<td>1.38</td>
<td>0.44</td>
<td>0.15</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Total phosphorus</td>
<td>0.94</td>
<td>1.13</td>
<td>1.11</td>
<td>0.88</td>
<td>1.00</td>
<td>0.94</td>
<td>0.86</td>
<td>0.90</td>
<td>0.98</td>
<td>0.62</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Filtered reactive phosphorus</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.04</td>
<td>1.04</td>
<td>1.05</td>
<td>1.05</td>
<td>1.03</td>
<td>1.04</td>
<td>1.02</td>
<td>1.04</td>
</tr>
<tr>
<td>Nutrients</td>
<td>Inorganic nitrogen</td>
<td>1.76</td>
<td>1.83</td>
<td>1.78</td>
<td>1.47</td>
<td>1.40</td>
<td>1.83</td>
<td>0.12</td>
<td>1.67</td>
<td>1.39</td>
<td>1.51</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>Chlorophyll</td>
<td>0.55</td>
<td>0.86</td>
<td>0.86</td>
<td>0.22</td>
<td>0.26</td>
<td>0.22</td>
<td>0.26</td>
<td>0.52</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Diversity of water plants</td>
<td>0.84</td>
<td>0.89</td>
<td>0.84</td>
<td>0.89</td>
<td>0.84</td>
<td>0.89</td>
<td>0.19</td>
<td>0.19</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Abundance of water plants</td>
<td>0.46</td>
<td>0.51</td>
<td>0.46</td>
<td>0.51</td>
<td>0.46</td>
<td>0.51</td>
<td>0.05</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>
How is a Report Card produced?

The Report Card is based on the calculation of an ecosystem health ‘score’. The score compares the measured value obtained for a water sample against both an agreed target (e.g. a water quality standard) and a worst case value (e.g. the boundary between ‘poor’ and ‘bad’ ecological status classes, or based on other scientific evidence). Parameter values can include physical, chemical, nutrient and biological information for a chosen sampling location that represents a water body in a catchment or sub-catchment. The calculations use the available monitoring data for a given reporting period with an individual parameter score calculated using the following equation:

\[
\text{Score} = 1 - \frac{\text{Value} - \text{Target}}{\text{Worst case} - \text{Target}}
\]

As an example, and using monthly values of total phosphorus (TP) concentration measured in 2007 in Hickling Broad in the Thurne catchment, the geometric mean obtained as the sample value is equal to 0.058 milligrams per litre (mg/L) and is compared against a target or water quality standard concentration of 0.035 mg/L and a worst case concentration of 0.196 mg/L. Using this information, the computed score for this nutrient parameter is:

\[
1 - \frac{(0.058 - 0.035)}{(0.196 - 0.035)} = 0.856
\]

An “indicator score” for a monitoring site is taken as the worst among the reported parameters for each of the physical, chemical, nutrient and biological indicator classes. An “overall score” for the same site is then reported as the worst among the indicator scores. Comparison can be made between the calculated scores and given EU Water Framework Directive ecological classes as shown in the figure below, noting the different and generally non-linear mapping for different parameters. All this information can then be displayed in the Report Card graphically as a map and quantitatively in a table.

In deciding the final reported score, recognition is given to the EU Water Framework Directive “one out-all out” classification rule which has the advantage of providing a clear result and can be used to mobilise and spatially target limited resources, but should be supported by a breakdown of all the applied indicators to provide balance, report incremental improvements, and target specific mitigation measures.

Example translation of a given score into EU Water Framework Directive ecological status classes

It is important to note that the choice of targets, worst cases and averaging methods often requires a judgment based on limited monitoring data and current scientific understanding. For example, the UK Technical Advisory Group on the EU Water Framework Directive (UKTAG 2008a, b) has developed target values for some water quality parameters. For other parameters (suspended solids are a prominent example - UKTAG 2008b), the scientific knowledge is insufficient to set targets. The Report Card can incorporate changes in targets as new knowledge becomes available and so can demonstrate the resulting improvement or deterioration in the ecosystem health score. This helps to encourage transparency in reporting of water quality.

Further information

The research has been carried out at the University of East Anglia and SOAS, University of London.

The Environment Agency, Norwich Office, and The Broads Authority are gratefully acknowledged for data provision.

Key contacts:
Laurence Smith, SOAS, University of London, email: ls34@soas.ac.uk and Kevin Hiscock, University of East Anglia, email k.hiscock@uea.ac.uk

Useful resources:
http://www.healthywaterways.org

UKTAG (2008a) UK Environmental Standards and Conditions (Phase 1).
http://www.wfduk.org

UKTAG (2008b) UK Environmental Standards and Conditions (Phase 2).
http://www.wfduk.org
http://www.relu.ac.uk/research/projects/Third%20Call/Smith.htm